4 research outputs found

    Denoising ECG Signal Using DWT with EAVO

    Get PDF
    Cardiovascular diseases are the leading cause of death across the world, and traditional methods for determining cardiac health are highly invasive and expensive. Detecting CVDs early is critical for effective treatment, yet traditional detection methods lack accessibility, accuracy, and cost-effectiveness – leaving patients with little hope of taking control of their own cardiac health. Noisy ECG signals make it difficult for health practitioners to accurately read and determine heart health. Unreliable readings can lead to misdiagnosis and needless expense. Despite the importance of ECG analysis, traditional methods of signal denoising are inefficient and can produce inaccurate results. This means that medical practitioners are struggling to obtain reliable readings, leaving them unable to accurately treat their patients and leading to a lack of confidence in the medical field. The Enhanced African Vulture Optimization (AVO) algorithm with Discrete Wavelet Transform (DWT) optimized by adaptive switching mean filtration (SMF) is proven to provide accurate denoising of the ECG signal. With this reliable method, medical professionals can quickly and accurately diagnose patients. Obtaining accurate ECG signals and interpreting them quickly is a challenge for healthcare professionals. Not only it takes a lot of time and skill but also requires specialized software to interpret the signals accurately. Healthcare professionals are facing a serious challenge when it comes to obtaining accurate ECG signals and interpreting them quickly. It requires them to spend extra time and effort, as well as specialize in the field with expensive software. Time is of the essence in healthcare and ECG readings can mean the difference between life and death. Specialized software can be expensive and time-consuming for those who don't have the resources or expertise. Our easy-to-use platform allows healthcare professionals to quickly interpret ECG signals, saving time, money, and lives! Get accurate readings. The EAVO algorithm and MIT-BIH dataset provide an effective solution to this problem. With the proposed filter built using EAVO, businesses can attain significant enhancements in reliable parameters and obtain accurate testing results in terms of SNR, MD, MSE and NRMSE

    Image Processing based Plant Disease Detection and Classification

    Get PDF
    Generally, it has been observed that due to lack of proper knowledge of disease intensity, the farmer is not able to use the pesticide in proper quantity to treat the diseases. The use of pesticide mostly becomes more than necessary, due to which there is not only a loss of money, but also it causes soil and environmental pollution. If diseases severity-wise labelled data sets are available, it can be used to develop pesticide recommendation systems. Images with least infection severity can be used to train and validate a DL model to capture the plant diseases at very initial stage. Classification techniques may be viewed as variations of detection systems; however, instead of attempting to identify only one particular illness among several diseases, classification methods detect and name the diseases harming the plant. This presents various classification and plant disease detection methods based on image processing with results

    Classification Models for Plant Diseases Diagnosis: A Review

    Get PDF
    Plants are important source of our life. Crop production in a good figure and good quality is important to us. The diagnosis of a disease in a plant can be manual or automatic. But manual detection of disease in a plant is not always correct as sometimes it can be not be seen by naked eyes so an automatic method of detection of plant diseases should be there. It can make use of various artificial intelligence based or machine learning based methods. It is a tedious task as it needs to be identified in earlier stage so that it will not affect the entire crop. Disease affects all species of plant, both cultivated and wild. Plant disease occurrence and infection severity vary seasonally, regarding the environmental circumstances, the kinds of crops cultivated, and the existence of the pathogen. This review attempts to provide an exhaustive review of various plant diseases and its types, various methods to diagnose plant diseases and various classification models used so as to help researchers to identify the areas of scope where plant pathology can be improved

    A noise removal methodology for effective ecg enhancement in heart disease prediction & analysis

    No full text
    An electrocardiogram (ECG) measures the electrical activity of the heart by placing various terminals on the body. The heart cannot pump blood properly due to electrical anomalies, resulting in insufficient blood supply to the body and brain. As a result, ECGs are vital in determining the condition of cardiovascular patients. An ECG signal may be debased by various clamours, for example, power line interference, standard meandering, anode contact disturbance, movement antiquities, muscle contraction, instrumentation noise caused by the electronic device, and so forth. So, to overcome such issues, this paper brings an effective proportionate linear Mean Square algorithm (PLMS) for its improved version of LMS and progresses the adaptive tracking phenomenon and provides superior performance. Using the proposed algorithm, the adaptive filter works more efficiently and consumes less power. As a result, the signal-to-noise ratio and MSE are high and hence computational complexity is greatly reduced. Therefore, it can effectively monitor patients with heart-related problems
    corecore